A. Design Goals

1. Minimize building life cycle costs, direct and indirect, relating to energy use, maintenance, waste disposal and occupant health & productivity.
2. Minimize environmental impacts throughout the building life cycle, including product manufacturing, construction, use/occupancy, and demolition or renovation/reuse.
3. Optimize indoor environmental quality.

B. Design Process

1. The US Green Building Council LEED Rating System NC- 2009 is to be used as a performance standard and guideline on all new building and renovation projects. The highest number of credits should be achieved that are feasible, within project scope, program and budget. Official LEED Certification at a minimum of Silver level is to be obtained on all major projects.

2. Evaluate life cycle costs of design alternatives to reduce costs of major building systems. Use energy simulation/modeling software on major projects. Life cycle cost saving strategies used should have maximum payback period of 5-10 years.

3. The Project Design Team is to determine design strategies appropriate for project program, site and budget. The LEED Checklist is to be submitted with project reviews to document sustainable strategies implemented. Final checklist will be published on the WMU Office of Sustainability website.

4. Architectural/Engineering consultants are to include the above services in the Professional Services Agreement.

C. Design Guidelines

Site Work

1. Erosion & Sedimentation Control: Employ techniques such as silt fencing, sediment traps/filters, topsoil stockpiling and slope stabilization to minimize erosion of soil during construction. At a minimum, comply with Michigan NPDES Construction Storm Water Program: Rule 2190 of Part 31 of Act 451 and EPA Construction General Permit 2008.

2. Site Selection: As indicated in the WMU Master Plan, avoid development of buildings and parking in flood plain and wetland areas.

3. Development Density & Community: Encourage moderate density development to preserve open space and enhance pedestrian & bicycle use of campus. Locate new facilities in proximity to other related services.

5. Minimize Site Disturbance: Consider the impact of project on the surrounding ecosystem. Investigate methods to minimize impacts on natural habitats and watersheds.

6. Habitat and Open Space: Create or preserve vegetative open space within the project site, as feasible. Where feasible, use vegetation that is native to the bioregion to support ecological systems.

7. Stormwater Management: Limit off-site storm water runoff and employ methods to increase on-site infiltration. Project design is to maintain no net increase in discharge to storm system for projects of an acre or larger. See WMU Campus Stormwater Policy 2008.

8. Heat Island Effect: Use light colored site surfaces, or provide shading on site where feasible, to minimize solar heat absorption.

9. Light Pollution Reduction: Minimize site lighting levels & off-site light spillover/glare, while providing for adequate levels for security and wayfinding.

Water Conservation

1. Water Use Reduction: Use strategies to reduce water consumption, including low flow plumbing fixtures and mechanical equipment. Consider methods for water reuse & recycling.

Energy Use

1. Building Systems Commissioning: Key mechanical & electrical systems are to go thru a Commissioning process, which includes the following:
 • Inspection & testing for functional performance in accordance with project objectives & University guidelines.
 • Testing to verify no cross connections between storm and sanitary sewers.
 • Documentation of criteria, inspections/testing & acceptance
 • Training of WMU operations & maintenance staff
 All projects shall implement a Commissioning plan, with the scope to be determined by the project team.

2. Integrate Buildings with the Site: Consider local climate & site influences on building energy use. Use "free" energy sources where feasible, such as solar energy, daylight, exterior temperature variations and winds.

2. Optimize Energy Performance: Select building envelope, mechanical and electrical systems for improved energy efficiency. All projects are to comply with the International Energy Code as a minimum. Typical strategies & technologies:
 • Building Envelope
 Control & utilization of solar heat gain
 Daylighting of interior spaces
High performance windows/glazing
Optimized insulation values
Reduced air infiltration

Mechanical Systems
High efficiency equipment
Direct Digital Control System (DDC) for HVAC
Occupancy sensors/CO2 monitoring
Heat recovery systems
Economizer cycle cooling
Zoning of HVAC system based on building orientations & loads
Variable speed drives on motors and fans
Time of day scheduling
Separate controls for individual spaces, where feasible

Electrical Systems
High efficiency lighting fixtures (no incandescent)
Occupancy sensors
Daylight sensors
Separate ambient and task lighting
Lighting dimmers

3. CFC/HCFC/Halon Reduction: Avoid use of these products in HVAC refrigerants and fire suppression systems. No use of CFC’s in new facilities. Develop a phase out & conversion plan for existing facilities.

4. Renewable Energy: Consider strategies to utilize renewable energy sources, including grant funding opportunities.

5. Measurement & Verification: Develop a plan for measurement & verification of energy saving design goal implementation, in conjunction with the Commissioning Plan.

Building Materials

1. Recycling Facilities: Plan for convenient areas in buildings for sorting & storage of recyclable items by the building occupants. See WMU Recycling Coordinator for type of items to be recycled & number of bins needed.

2. Building Reuse: Where appropriate, consider reuse of existing building elements such as structural system, building envelope, interior walls and finishes.

3. Construction Waste Management: Contractors are to develop a plan for sorting, storing & recycling of waste materials on projects. “Waste Spec” is to be used as a specification for this work. All projects shall implement a Construction Waste Management Plan, with the scope to be determined by the project team. A minimum of 50% of construction waste is to be salvaged, recycled or otherwise diverted from landfill or incineration. Submit final recycling data to WMU Office of Sustainability.

4. Recycled Content Materials: Use materials with post-consumer or post-industrial recycled content where feasible. Common products with recycled content include structural steel,
aluminum windows, gypsum board, acoustical ceiling tiles, rubber floor tiles, carpeting and toilet partitions.

5. Durable & Flexible Materials: Utilize components and systems which are durable and easy to maintain. Where feasible, use materials which provide flexibility for future changes and modifications to occur.

7. Renewable Materials: Consider use of products that are comprised of raw materials that are in abundant supply or come from renewable sources. When feasible, obtain wood products from Forest Stewardship Council certified suppliers.

8. Materials containing PCB’s, lead and asbestos are prohibited. Mercury containing products are prohibited, unless no alternatives are available. Use of Mercury containing products requires full disclosure in product submittals.

Indoor Environmental Quality

2. Tobacco Smoke Control: Prohibit smoking within 25 feet of buildings, including during construction.

3. Ventilation Requirements: Optimize the amount of fresh air provided to building spaces. Connect occupancy sensors & carbon dioxide monitors to HVAC systems, where feasible.

4. Construction Air Quality Management: Protect ductwork and equipment from contamination during construction. At a minimum:
 •During construction, comply with SMACNA IAQ Guideline for Occupied Buildings Under Construction, 2007, Chapter 3.
 •Protect stored on-site or installed absorptive materials from moisture damage
 •If air handlers are used during construction, filtration media with a MERV value of 8 are to be used at each return grille, per ASHRAE 52.2-1999.
 •Replace all filtration media immediately prior to occupancy.
 •Conduct a 2 week building flush-out with new filtration media with 100% outside air after construction ends & prior to occupancy. After flush out, replace filtration media. or
 •Conduct a baseline indoor air quality testing procedure to demonstrate that concentration of air contaminants are below specified levels. Meet the testing requirements listed in LEED IEQ Credit 3.

5. Low Emitting Materials: Utilize materials which have low levels of volatile organic compound off-gassing for interior construction:
 •Adhesives & sealants: VOC content less than limits of South Coast Air Quality Management District Rule No. 1168 and Green Seal Standard 36.
 •Paints & coatings: VOC emissions that do not exceed Green Seal’s Standard
GS-11 & GC-03 and South Coast Air Quality Management District Rule No. 1113.
• Carpet: Comply with CRI Green Label Plus Testing program
• Carpet cushion: Comply with CRI Green Label Testing program
• Composite panels: No added urea formaldehyde resins.

6. Indoor Chemical Source Control: Consider methods to control & reduce dirt and moisture accumulation in flooring at entryways. Provide local exhaust ventilation at spaces in which hazardous chemicals will be present.

7. Design for Human Health & Occupant Controls: Consider environmental needs of people in terms of daylight, ventilation, exterior views and thermal/acoustic/visual comfort for interior spaces. Where feasible, provide controls for occupants to adjust these conditions. A direct line of sight to exterior vision glazing from 90% of all regularly occupied spaces is a long term goal.

D. References

General

Site Work
• EPA Construction General Permit 2008
• Michigan NPDES Construction Storm Water Program: Rule 2190 of Part 31 of Act 451
• ANSI/ASHRAE/IESNA Standard 90.1-2007, Section 9

Water Conservation
• The Energy Policy Act (EPAct) 1992, 2005
• Michigan Plumbing Code 2009

Energy Use
• US DOE/EPA Energy Star Guidelines
• EPA Clean Air Act, Title VI, Section 608- Compliance with the Refrigerant Recycling Rule
• International Performance Measurement & Verification Protocol, Volume III EVO30000.1-2006

Building Materials
• EPA Comprehensive Guide for Procurement of Products Containing Recovered
Materials; Recovered Materials Advisory Notice III; Final rule (1/19/00) 40 CFR Part 247

• Forest Stewardship Council Principles and Criteria

Indoor Environmental Quality

• ASHRAE 62.1-2007: Ventilation for Acceptable Indoor Air Quality

• Sheet Metal & Air Conditioning National Contractors Association (SMACNA) IAQ Guidelines for Occupied Buildings Under Construction, Chapter 3, November 2007

• EPA Compendium of Methods for Determination of Air Pollutants in Indoor Air

• South Coast Air Quality Management District Rule No. 1168, Amended 1/7/05

• Green Seal Standard 36 (GS-36), 10/19/2000

• Green Seal Paints and Coatings Requirements- Paints (GS-11), GC-03.

• South Coast Air Quality Management District Rule No. 1113

• Carpet and Rug Institute Green Label Indoor Air Quality Test Program

• ASHRAE Standard 55-2004

END